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Four-phase merging in sessile compound drops

By L. M A H A D E V A N †, M . A D D A - B E D I A AND Y. P O M E A U
Laboratoire de Physique Statistique de l’Ecole Normale Supérieure,

24 rue Lhomond, 75231 Paris Cedex 05, France

(Received 28 June 2001 and in revised form 23 October 2001)

We consider the statics of compound droplets made of two immiscible fluids on a
rigid substrate, in the limit when gravity is dominated by capillarity. In particular,
we show that the merging of four phases along a single contact line is a persistent
and robust phenomenon from a mechanical and thermodynamic perspective; it can
and does occur for a range of interfacial energies and droplet volumes. We give an
interpretation for this in the context of the macroscopic Young–Laplace law and
its microscopic counterpart due to van der Waals, and show that the topological
transitions that result can be of either a continuous or discontinuous type depending
on the interfacial energies in question.

1. Introduction
Thermodynamics tells us that two bulk phases, like a liquid and its vapour at the

same temperature, pressure and chemical potential(s), can coexist steadily along a
two-dimensional surface. This is generic because two intersecting volumes in three-
dimensional space meet along a surface. Three phases, like a liquid drop, its vapour
and a flat solid, meet along a line that generically defines the intersection of a
volume, its exterior and a plane. Thus one would expect four phases, for instance two
immiscible liquids, a vapour and a solid, to merge at points, unless special conditions
(on the mass of each liquid phase for instance) are satisfied. However, we show below
that this may not be true: in some cases the merging of four phases at equilibrium
occurs generically and persistently along a line (instead of at a point) and follows
from a peculiarity of the Young–Laplace equilibrium conditions at the contact line.

When a small droplet of volume V sits on a solid surface, its equilibrium shape
is determined by the minimization of its capillary energy (in the formulation due
to Gauss) associated with the interfacial area that it presents to its own vapour,
subject to the constraint of a fixed volume, and appropriate boundary conditions at
the triple line. In the absence of gravitational forces, the shape of the interface is
simply a section of a spherical surface (in three-dimensions) and an arc of a circle (in
two-dimensions). An equivalent treatment in terms of force balance requires that the
droplet be axisymmetric (so that all torques are balanced), and that the interface and
the triple line are determined by the Laplace law (Laplace 1806) relating the curvature
of the interface to the difference in pressure between the liquid and its vapour, along
with the Young–Laplace condition (Young 1805) at the triple line. The equilibrium
equation for forces normal to the interface is

pv − pl ≡ σlvκ (1.1)
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Figure 1. The different configurations of a composite drop of two immiscible liquids on a substrate.
The numbers denote the phases: 1, liquid 1, 2, liquid 2, 3, vapour, 4, solid. (a) Configuration (I):
liquid 2 encapsulates liquid 1 and there are two contact lines on the substrate. (b) Configuration
(m): liquid 2 encapsulates liquid 1 and the contact lines merge. (c) Configuration (II): liquid 2 forms
a drop that sits on liquid 1, and there are two contact lines, one on the substrate and one at the
interface of the liquids.

where κ is the mean curvature of the liquid–vapour interface and pv, pl denote the
pressure of the vapour and the liquid. The general solution to (1.1) is a surface
of constant mean curvature, in this case simply part of the surface of a sphere (a
spherical cap). Along the contact (triple) line, we must also balance forces; this leads
to the well-known Young–Laplace condition

σlv cos θ = σsv − σls. (1.2)

Here σlv, σls, σsv denote the interfacial tension of the liquid–vapour, liquid–solid and
solid–vapour interfaces respectively, and θ is the contact angle between the interface
and the substrate. Together with the constraint of fixed volume, the above equations
suffice to uniquely determine the shape of the drop and the pressure inside it in terms
of the vapour pressure pv and the three interfacial tensions. A point that must be
emphasized here is that the Young–Laplace condition only enforces force equilibrium
in the plane of the solid; the vertical component of the liquid–vapour interfacial
tension σlv sin θ is unbalanced; of course there is no contradiction if the solid is
assumed to be rigid. For a stiff solid such as glass, accounting for the vertical force
leads to a deformation that is on the atomic scale, and therefore inconsequential,
because of its very small contribution to the total energy. As we shall see, this degree
of freedom will be crucial in determining a range of parameters over which four
phases can merge robustly.

2. Macroscopic theory of four-phase merging
We now generalize the above picture, to consider the equilibrium shape of two

immiscible fluids 1 and 2 adjoining a vapour 3 and sitting on a flat solid 4, that
minimizes the capillary energy (this is actually the free energy in the case we are
interested in) associated with the area of each interface bounding a bulk phase,
subject to the usual volumetric constraints. In the present problem, there are a priori
six capillary constants σij , i = 1 − 4, j = 1 − 4; σij = σji, (i 6= j) denoting the energy
per unit area of the six possible interfaces separating the four phases.

Next, we consider the situation associated with a fixed volume V1 of liquid 1, and
a gradually varying volume V2 of liquid 2. The configurations of the droplets must
be axisymmetric to satisfy torque balance; however, there are three distinct states in
which the drops can sit relative to each other, as shown schematically in figure 1(a–c),
and denoted by configuration (I), (m) and (II) respectively. We will consider each one
separately, but note that geometric continuity allows for a smooth transition from one



Four-phase merging in sessile compound drops 413

configuration to another. As we shall see for certain parameter ranges, considerations
of force balance allow some of these states to persist for a range of drop volumes.

2.1. Configuration (I)

We consider configuration (I) in figure 1(a), a spherical cap of liquid 2 with a small
droplet of 1 inside, the two fluid interfaces being disjoint. Let R12, R23 be the radii
of the spherical caps that bound the interfaces 1–2 and 2–3 respectively. They are
related to the contact radii of the drops r1 and r2 via the geometric relations

r1 = R12 sin θ12, r2 = R23 sin θ23. (2.1)

Then the volumes of the caps are given by

V1 =
π

3
R3

12(2− 3 cos θ12 + cos3 θ12), V2 + V1 =
π

3
R3

23(2− 3 cos θ23 + cos3 θ23). (2.2)

The interfacial areas are given by

A12 = 2π(1− cos θ12)R
2
12, A23 = 2π(1− cos θ23)R

2
23. (2.3)

The equilibrium contact angles θ12, and θ23 for the drops of liquid 1, 2 sitting as shown
in figure 1(a) are determined by the Young–Laplace relations

cos θ12 =
σ24 − σ14

σ12

, cos θ23 =
σ34 − σ24

σ23

. (2.4)

Using the relations (2.1), (2.2) in the expressions for the drop volumes yields(
r2

r1

)3

=

(
1 +

V2

V1

)
f(θ23)

f(θ12)
, (2.5)

where

f(θ) ≡ 1

F(θ)
≡ sin3 θ

(2− 3 cos θ + cos3 θ)
, (2.6)

and f(θ) is monotonically decreasing in the range θ ∈ [0, π]. Furthermore the height
of the 2–3 interface above the solid must be larger than that of the 1–2 interface, i.e.
R23(1− cos θ23) > R12(1− cos θ12). By using (2.5) and (2.1) this inequality is

1 +
V2

V1

>
f(θ12)

f(θ23)

(
tan 1

2
θ12

tan 1
2
θ23

)3

. (2.7)

For later use, we record the energy of configuration (I) which is

E(I) = σ23A23 + σ12A12 + πR2
12 sin2 θ12(σ14 − σ34)

+π(R2
23 sin2 θ23 − R2

12 sin2 θ12)(σ24 − σ34). (2.8)

Here (and elsewhere) we have subtracted the infinite energy associated with the
interaction of the solid plane and the vapour to obtain a finite result.

2.2. Configuration (m)

There are two possible routes to reach configuration (m), shown in figure 1(b), where
four phases merge along the contact line on the solid. We may start from configuration
(I) with a large volume of liquid 2, i.e. V2 � V1 and reduce V2 until the 2–3 interface
meets the 1–2 interface. The other possibility is to start from configuration (II)
with an infinitesimal amount of liquid 2, i.e. V2 � V1, and gradually increase V2.
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Generically, these two ways of achieving configuration (m) will yield different values
of V2/V1, since they represent limits of different topological configurations. Thus, we
can expect that under certain conditions, the merger of four phases along a contact
line can persist for a range of drop volumes, which we now proceed to show.

We first approach configuration (m) as a limiting case of configuration (I), when the
two interfaces 1–2 and 2–3 merge along the solid. This corresponds to the intermediate
configuration connecting figures 1(a) and 1(b). To determine the conditions when this
state can exist, we substitute r1 = r2 = r into condition (2.5), so that

1 +

(
V2

V1

)(m)

=
f(θ(m)

12 )

f(θ(m)
23 )

. (2.9)

In view of the inequality (2.7), we see that this requires that the equilibrium contact
angles of the individual drops satisfy the inequality tan θ12/2 < tan θ23/2, i.e. θ12 < θ23,
for the merger of the contact lines to occur, consistent with the intuitive geometrical
requirement evident in figure 1(b). The Young–Laplace equation for the balance of
horizontal forces in this configuration leads to

σ12 cos θ(m)
12 + σ23 cos θ(m)

23 = σ34 − σ14. (2.10)

θ
(m)
12 and θ(m)

23 are still the angles between the solid and the surfaces of droplets 1 and
2, but they are not generally equal to their usual Young–Laplace values given in (2.4).
However, for one particular value of the ratio (V2/V1)

(m) = (V2/V1)
(m′), (2.9) is satisfied

with θ
(m′)
12 = θ12, θ

(m′)
23 = θ23, i.e. the contact angles have their equilibrium values given

in (2.4). The critical value of the volume ratio when the contact lines merge is given
by substituting this condition in (2.10) so that

1 +

(
V2

V1

)(m′)

=
f(θ(m′)

12 )

f(θ(m′)
23 )

=
f(θ12)

f(θ23)
. (2.11)

When V2/V1 is different from (V2/V1)
(m′), conditions (2.10) and (2.9) determine θ(m)

12 , θ
(m)
23

as a function of the V2/V1, i.e. generically, we can expect a range of V2/V1 consistent
with four-phase merging and energy minimization as embodied in (2.8). This one-
parameter family of solutions is a direct result of the degree of freedom associated with
not having to satisfy the balance of vertical forces along the four-phase contact line.

We can also approach configuration (m) as the limit of configuration (II) when the
drop of liquid 2 rides on top of liquid 1 and just before it moves on to the solid sub-
strate, the intermediate configuration connecting figures 1(b) and 1(c). By geometric
continuity, the contact angle of drop 1 is associated with the equilibrium of the drop
with vapour 3 (rather than with liquid 2), at this instant. Furthermore, the Young–
Laplace condition (2.10) for the balance of horizontal forces must be supplemented by
an additional equation for the balance of vertical forces, which then uniquely defines
a second critical value of (V2/V1)

(m) = (V2/V1)
(m′′) that is consistent with the merger

of the contact lines. In general (V2/V1)
(m′) 6= (V2/V1)

(m′′), so that we can expect a range
of values for V2/V1 where it is possible to have the robust merger of four phases.

2.3. Configuration (II)

So far, we have considered the configuration of the drops when both contact lines are
on the solid, being disjoint or merged. Let us consider configuration (II) when drop 2
rides on drop 1, as shown in figure 1(c). Here, although the interface 2–3 is spherical,
the interface 1–3 is not necessarily so (and in general is just an axisymmetric surface
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of constant mean curvature). However, a simple calculation shows that it is in fact
spherical, greatly facilitating matters. The volumes of the two drops are given by

V1 = 1
3
πr3

1F(θ13)− 1
3
πr3

2(F(ψ13)− F(ψ12)), V2 = 1
3
πr3

2(F(ψ23)− F(ψ12)), (2.12)

where F is defined in (2.6). The geometric identity r2/ sinψ13 = r1/ sin θ13 leads
to a relation analogous to (2.5) for the ratio of drop volumes given in (2.12) for
configuration (II)(

r2

r1

)3

=
sin3 ψ13

sin3 θ13

=
(V2/V1)F(θ13)

(1 + V2/V1)(F(ψ13)− F(ψ12)) + F(ψ23)− F(ψ13)
. (2.13)

Moving from geometric considerations to the balance of forces, along the contact
line on the solid where the phases 1, 3, 4 merge, horizontal equilibrium requires that

σ13 cos θ13 = σ34 − σ14 = σ12 cos θ12 + σ23 cos θ23, (2.14)

where the last equality follows from (2.4). Along the contact line where the liquid
phases 1, 2, merge with the vapour 3, horizontal and vertical equilibrium demand the
satisfaction of the Young–Laplace relations

σ13 cosψ13 = σ12 cosψ12 + σ23 cosψ23, σ13 sinψ13 = σ12 sinψ12 + σ23 sinψ23. (2.15)

As discussed in § 2.2, for a critical volume ratio V2/V1 configuration (II) with
one drop atop another smoothly approaches configuration (m) when the four phases
merge along the contact line. Geometric continuity demands that for this special
configuration denoted by (.)(m′′)

r2 = r1, ψ13 = θ13, ψ12 = θ
(m′′)
12 , ψ23 = θ

(m′′)
23 . (2.16)

Then, the Young–Laplace relations (2.15) are

σ13 cos θ13 = σ12 cos θ(m′′)
12 + σ23 cos θ(m′′)

23 , σ13 sin θ13 = σ12 sin θ(m′′)
12 + σ23 sin θ(m′′)

23 .

(2.17)

Solving for the transition contact angles yields

θ
(m′′)
12 = θ13 + cos−1 σ

2
13 + σ2

12 − σ2
23

2σ12σ13

, θ
(m′′)
23 = θ13 + cos−1 σ

2
13 + σ2

23 − σ2
12

2σ13σ23

, (2.18)

and the critical volume ratio is obtained by substituting (2.16) into (2.13) so that

1 +

(
V2

V1

)(m′′)

=
f(θ(m′′)

12 )

f(θ(m′′)
23 )

. (2.19)

For the persistent merger of four phases, (V2/V1)
(m′) > (V2/V1)

(m′′); using (2.11) and
(2.19) this yields

f(θ(m′)
12 )

f(θ(m′)
23 )

>
f(θ(m′′)

12 )

f(θ(m′′)
23 )

. (2.20)

For later use, we record the energy of the configuration (II) which is

E(II) = 2πσ13R
2
13(cosψ13 − cos θ13) + 2πσ12R

2
12(1− cosψ12)

+2πσ23R
2
23(1− cosψ23) + πR2

13 sin2 θ13(σ14 − σ34). (2.21)
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Figure 2. The ratio of the contact radii r2/r1 and the energy of the system E as a function of
the ratio of drop volumes V2/V1 for the configurations shown in figure 1, for different parameter

values (given in the text) chosen so that (a, d) V2/V
(m′)
1 > V2/V

(m′′)
1 , (b, e) V2/V

(m′)
1 = V2/V

(m′′)
1 , (c, f)

V2/V
(m′)
1 < V2/V

(m′′)
1 . The dashed lines show the energy of disjoint drops on the substrate.

2.4. Continuous and discontinuous transitions

To illustrate the different cases, we choose some specific values for the equilibrium
contact angles (interfacial energies) rather than choosing specific fluids. Since there
are a total of six interfacial energies, and only energy differences are important, we can
construct four dimensionless parameters, which can be some combination of the ratio
of the interfacial energies and the equilibrium contact angles. To achieve the geometry
shown in figure 1a, we must satisfy the inequality θ12 < θ23; a particular choice is
θ12 = π/4, θ23 = π/2. We also choose σ12/σ13 = 1. This leaves one dimensionless
parameter σ23/σ13 which we vary to show the different qualitative behaviours.

In figure 2, we show the variation in the ratio of the contact radii r2/r1 and the
energy of the system E as a function of the drop volume ratio V2/V1. Figure 2(a)
corresponds to the case when σ23/σ13 = 1.1 so that (V2/V1)

(m′′) < (V2/V1)
(m′), leading
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to persistent four-phase merger over a range of volume ratios. In the inset, we show
the relative change in the contact angles θ(m)

23 − θ23/θ23 and θ(m)
12 − θ12/θ12 as a function

of (V2/V1)
(m) in the four-phase merger regime when r2/r1 = 1; interestingly, the

variations are of the order of 30%. In figure 2(d ), we show the variation in the energy
of the system evaluated using (2.8); the energy varies continuously but suffers a
jump in the slope at the critical volume ratios (V2/V1)

(m′′) and (V2/V1)
(m′). Figure 2(b)

corresponds to the special case when σ23 =
√

2σ13 so that (V2/V1)
(m′′) = (V2/V1)

(m′),
and phase merging occurs only for one value of V2/V1. The corresponding curve
for the energy is shown in figure 2(e). Figure 2(c) corresponds to σ23 = 1.7σ13 and
so (V2/V1)

(m′′) > (V2/V1)
(m′). The graph immediately suggests that the transition from

configuration (I) to (II) is discontinuous in this case. This is clearly seen by considering
the energy of the system computed using (2.8), (2.21) as shown in figure 2(f ); the
minimum energy solution corresponding to the line r2/r1 = 1 that connects the two
critical volumes is larger than that associated with a path that corresponds to the
dashed line in figure 2(c). Thus, we can generically expect a discontinuous transition
from configuration (I) to (II) along the two dashed lines emanating at (m′) and (m′′)
depending on whether V2/V1 is being decreased or increased. In figure 2(d–f ) we also
plot the energy of two disjoint drops of liquid 1 and 2 on the substrate; in each case
it is smaller than that of the composite drops, suggesting that composite drops are
not global energetic minima. However, as we will argue later, they are local minima.

3. Towards a microscopic theory
Next, we complement the macroscopic considerations embodied in the macroscopic

theory of the previous section by considering microscopic models of capillary phe-
nomena. The classical example of such a theory is the so-called continuous-phase
model or van der Waals model (van der Waals 1893). For simplicity, we will limit
ourselves to two dimensions and only consider the limit where the interface slopes
are small on microscopic scales, so that we can treat the liquid droplets as slender
films. In this long-wavelength limit, the van der Waals model is closely related to the
macroscopic Young–Laplace theory (Pismen & Pomeau 2000) making it possible to
construct a consistent and uniform theory for static and dynamic contact lines.

We start by recalling the results for a single liquid/vapour interface merging with
a solid. In two dimensions, the height of the interface h = h(x) is a function of
the horizontal coordinate x. The solid surface corresponds to the plane z = 0, the
vapour phase is on the left when x is large and negative and the liquid phase is
on the right when x is large and positive. The classical van der Waals theory leads
to an equation for the equilibrium shape of the interface and can be formulated
variationally. The functional that must be minimized to account for the interactions
in the solid–liquid–vapour system may be written as

E[h(x)] =

∫ +∞

−∞
dx

[
σ

2

(
dh

dx

)2

+U(h)

]
. (3.1)

Here σ is the surface tension of the liquid–vapour interface, the gradient term penalizes
variations in the slope (or equivalently the density gradients in the classical van der
Waals theory) and U(h) is the interaction energy per unit length between the interface
and the solid surface. The potential U(h) has the following properties: ∂U/∂h|h? = 0,
U(h?) > 0, limh→0 U(h) = −∞, limh→∞U(h) = 0.

The equilibrium merging of the interface with the solid is described by the solution
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Figure 3. (a) A schematic of the four phases in the context of the microscopic van der Waals
theory. σ1 is the interfacial tension of the 1–2 interface, σ2 that of the 2-vapour interface. (b) A
schematic of the potential surface U(h1, h2) = U1(h1) +U(h2) +W (|h1− h2|). The global equilibrium
is denoted by (h∗∗1 , h∗∗2 ).

of the Euler–Lagrange equation that arises from minimizing (3.1):

σ
d2h

dx2
=
∂U(h)

∂h
, (3.2)

with the boundary conditions limx→−∞ h = h∗, and limx→+∞ h ≈ θx, with θ � 1
being the contact angle. Multiplying (3.2) by dh/dx and integrating leads to an
‘energy’-like integral of ‘motion’, which on using the boundary condition at infinity
yields θ =

√
U(h∗)/2σ. This is just the Young–Laplace condition for the present

problem (Pismen & Pomeau 2000), and follows from the translational invariance of
the functional (3.1).

We now extend the previous theory to the case of two different interfaces, one
between liquid 1 and liquid 2 at height h1, and another between liquid 2 and the
vapour at height h2 > h1, as shown in figure 3. The generalization of the functional
(3.1) to this case is

E[h1(x), h2(x)] =

∫ +∞

−∞
dx

[
2∑
i=1

σi

2

(
dhi
dx

)2

+

2∑
i=1

Ui(hi) +W (|h1 − h2|)
]
. (3.3)

Here σ1 is the surface tension between liquid 1 and liquid 2, while σ2 is the surface
tension between liquid 2 and the vapour, the interaction potential between the fluid
interfaces is W (|h1− h2|), while U1(h1) and U2(h2) represent the interaction potentials
of the fluid interfaces with the solid substrate. The Euler–Lagrange equations that
arise by minimizing (3.3) are

σ1

d2h1

dx2
=
∂U1

∂h1

+
∂W (|h1 − h2|)

∂h1

, σ2

d2h2

dx2
=
∂U2

∂h2

+
∂W (|h1 − h2|)

∂h2

. (3.4a,b)

The general solution of (3.4) depends on four free parameters. One can be absorbed
in the choice of the origin, since (3.4) forms an autonomous system in x, and two
other conditions arise from the equilibrium heights of the interfaces far from the
contact line limx→−∞ h1 = h∗∗1 , limx→−∞ h2 = h∗∗2 . This leaves one free parameter; for
each asymptotic direction in the (h1, h2) plane such that h1 < h2, a solution exists. As
we shall see, this is the microscopic equivalent of the macroscopic Young–Laplace
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condition that requires only a horizontal force balance for four-phase merging along
a contact line.

There is more than one equilibrium solution corresponding to the vanishing of
the right-hand sides of (3.4), which we now enumerate. In the case when phase 1
merges with the solid, we expect that h1 � h2, so that W and U2 are negligible.
This corresponds to a local equilibrium where ∂U/∂h1|h1=h∗1 = 0;U(h∗1) > 0. A similar
scenario holds for the case when phase 2 merges with the solid, when W and U1

are negligible, and the local equilibrium is described by dU/dh2|h2=h∗2 = 0;U(h∗2) > 0.
When the vapour merges with the solid, we expect that h1 and h2 have finite values, a
priori unrelated to h∗1 and h∗2. Let h∗∗1 and h∗∗2 be the finite coordinates of this maximum
of U(h1, h2) = U1(h1) +U2(h2) +W (|h1− h2|). The energy landscape U(h1, h2) then has
an isolated maximum at h∗∗1 , h∗∗2 , a ridge along or close to h1 = h2 for both h1 and
h2 large, that describes W , the interfacial interaction term in U, and finally a ridge
h1 = h∗1 when h2 � h1 that represents the liquid 2/solid interface. This is depicted
schematically in figure 3.

The transition from the solid/vapour interface to the triple-phase merging is
represented by a ‘trajectory’ leaving the fixed point h∗∗1 , h∗∗2 at x = −∞ to reach at
x = +∞ a trajectory such that h1 ≈ θ1x and h2 ≈ θ2x. Multiplying (3.4a) by dh1/dx,
(3.4b) by dh2/dx, adding the resulting equations and integrating the sum leads to

σ1θ
2
1 + σ2θ

2
2 = 2(U(h∗∗1 , h

∗∗
2 )−U(∞,∞)), (3.5)

leading to one equation between two unknowns, the angles θ1 = dh1/dx and θ2 =
dh2/dx. We have deliberately included the presence of the potential at infinity U(∞,∞)
to indicate its dependence on the limiting values of the two interfaces h1 and h2. The
resulting one-parameter family of solutions in the microscopic theory mirrors the
macroscopic freedom associated with the non-satisfaction of vertical force equilibrium
in the Young–Laplace condition treated in § 2.

The continuum of solutions may be indexed by the distance between x1 and x2,
the locations where d2h1(x1)/dx

2 and d2h2(x)/dx2 are maximum. When this distance
|x1−x2| is very large, one recovers two separate transitions, one from the vapour/solid
interface to the liquid 2/solid interface, the other from the liquid 1/solid to the liquid
2/solid interface. In this case, the contact angles Θ1 and Θ2 are given by

σ1Θ
2
1 = 2(U(h∗∗1 , h

∗∗
2 )−U(h∗1,∞)), σ2Θ

2
2 = 2(U(h∗1,∞)−U(∞,∞)), (3.6)

which are the Young–Laplace conditions for the contact angles in the usual three-
phase merging situation. This corresponds to the case when the interaction potential
W vanishes so that one gets an additional ‘integral of motion’ associated with (3.4).
In the general case, various limits associated with the relation of the interaction
potential W/Ui and the ratio of the interfacial tensions σ1/σ2 can exist, and may lead
to interesting phase diagrams, which we will not treat here.

4. Discussion
In this paper, following a consideration of the equilibrium of compound drops

made of two immiscible fluids on a rigid substrate we have shown that the merging
of four fluid phases along a contact line can persist over a range of parameter values.
The transition from one topological configuration to another for these drops can
be either continuous or discontinuous depending on the relative interfacial energies
(contact angles) of the various surfaces. While these effects can occur for entirely
reasonable parameter values, the stability of these configurations remains an issue.
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The robustness and stability of the four-phase contact line in configuration (m)
is a given in the appropriate parameter regime. For small droplets (i.e. when the
Bond number is small), gravitational effects are dominated by capillarity, and global
balance of torques guarantees that stable compound drops remain axisymmetric to
infinitesimal perturbations in configuration (II). In configuration (I), there is a weak
translational invariance associated with the indeterminacy of the inner drop with
respect to the outer one. However, as V2/V1 → 1, this leads only to axisymmetric
configurations which are stable. Stability of all these sessile configurations to finite
perturbations is a much more difficult question (just as it is even for free drops); in
fact two separate droplets can co-exist on the substrate and have a lower energy than
the composite drop as depicted in figure 2(d–f ). We will not address the issue further
here.

We now briefly outline some implications of our study. The perceived hysteresis of
the contact line of droplets in vapour environments of an immiscible liquid may be due
to the effect treated here; small amounts of the immiscible fluid can coat the surface
of the drop so that a range of contact angles becomes possible for small changes
in the total drop volume. Thus it may be possible to use the persistent merger of
contact lines in compound drops to change the effective capillary properties and thus
circumvent the need for organic surfactants which are usually used fo this purpose,
since the latter are stable only in a narrow temperature range. These ideas should
also be applicable to bubbles on surfaces whose contact angles may vary appreciably
due to a coating of an immiscible liquid. However, the main question that this study
raises is the experimental feasibility of these configurations and transitions.
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